Оглавление:

Ядерное оружие
Ядерное оружие

Ядерное оружие, Кома (Май 2024)

Ядерное оружие, Кома (Май 2024)
Anonim

Эффекты ядерного оружия

Ядерное оружие принципиально отличается от обычного оружия из-за огромного количества взрывной энергии, которую оно может выделять, и тех видов воздействия, которые он производит, таких как высокие температуры и радиация. Побочные эффекты ядерного взрыва и выпадений хорошо известны по данным, полученным в результате нападений на Хиросиму и Нагасаки, Япония; из более чем 500 атмосферных и более 1500 подземных ядерных испытаний, проведенных по всему миру; и от обширных расчетов и компьютерного моделирования. Долгосрочные последствия для здоровья человека и окружающей среды менее достоверны, но были тщательно изучены. Воздействия ядерного взрыва зависят от многих факторов, включая конструкцию оружия (деление или слияние) и его мощность; происходит ли детонация в воздухе (и на какой высоте), на поверхности, под землей или под водой;метеорологические и экологические условия; и является ли цель городской, сельской или военной.

Когда ядерное оружие детонирует, возникает огненный шар с температурами, подобными тем в центре Солнца. Испускаемая энергия принимает несколько форм. Приблизительно 85 процентов энергии взрыва производит воздушный взрыв (и удар) и тепловое излучение (тепло). Оставшиеся 15 процентов выделяются в виде первоначального излучения, произведенного в течение первой минуты или около того, и остаточного (или задержанного) излучения, испускаемого в течение некоторого периода времени, некоторые из которых могут быть в форме локальных выпадений.

взрыв

The expansion of intensely hot gases at extremely high pressures in a nuclear fireball generates a shock wave that expands outward at high velocity. The “overpressure,” or crushing pressure, at the front of the shock wave can be measured in pascals (or kilopascals; kPa) or in pounds per square inch (psi). The greater the overpressure, the more likely that a given structure will be damaged by the sudden impact of the wave front. A related destructive effect comes from the “dynamic pressure,” or high-velocity wind, that accompanies the shock wave. An ordinary two-story, wood-frame house will collapse at an overpressure of 34.5 kPa (5 psi). A one-megaton weapon exploded at an altitude of 3,000 metres (10,000 feet) will generate overpressure of this magnitude out to 7 km (about 4 miles) from the point of detonation. The winds that follow will hurl a standing person against a wall with several times the force of gravity. Within 8 km (5 miles) few people in the open or in ordinary buildings will likely be able to survive such a blast. Enormous amounts of masonry, glass, wood, metal, and other debris created by the initial shock wave will fly at velocities above 160 km (100 miles) per hour, causing further destruction.

Thermal radiation

As a rule of thumb, approximately 35 percent of the total energy yield of an airburst is emitted as thermal radiation—light and heat capable of causing skin burns and eye injuries and starting fires of combustible material at considerable distances. The shock wave, arriving later, may spread fires further. If the individual fires are extensive enough, they can coalesce into a mass fire known as a firestorm, generating a single convective column of rising hot gases that sucks in fresh air from the periphery. The inward-rushing winds and the extremely high temperatures generated in a firestorm consume virtually everything combustible. At Hiroshima the incendiary effects were quite different from those at Nagasaki, in part because of differences in terrain. The firestorm that raged over the level terrain of Hiroshima left 11.4 square km (4.4 square miles) severely damaged—roughly four times the area burned in the hilly terrain of Nagasaki.

Initial radiation

A special feature of a nuclear explosion is the emission of nuclear radiation, which may be separated into initial radiation and residual radiation. Initial radiation, also known as prompt radiation, consists of gamma rays and neutrons produced within a minute of the detonation. Beta particles (free electrons) and a small proportion of alpha particles (helium nuclei, i.e., two protons and two neutrons bound together) are also produced, but these particles have short ranges and typically will not reach Earth’s surface if the weapon is detonated high enough above ground. Gamma rays and neutrons can produce harmful effects in living organisms, a hazard that persists over considerable distances because of their ability to penetrate most structures. Though their energy is only about 3 percent of the total released in a nuclear explosion, they can cause a considerable proportion of the casualties.